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ABSTRACT

Circular data analysis is a particular branch of statistics that sits somewhere between the analysis of linear 
data and the analysis of spherical data. Circular data are used in many scientific fields. The efficiency 
of the statistical methods that are applied depends on the accuracy of the data in the study. However, 
circular data may have outliers that cannot be deleted. If this is the case, we have two ways to avoid the 
effect of outliers. First, we can apply robust methods for statistical estimations. Second, we can adjust 
the outliers using the other clean data points in the dataset. In this paper, we focus on adjusting outliers in 
circular data using the circular distance between the circular data points and the circular mean direction. 
The proposed procedure is tested by applying it to a simulation study and to real data sets. The results 
show that the proposed procedure can adjust outliers according to the measures used in the paper.   

Keywords: Directional data, circular data, circular mean, circular distance, outlier 

INTRODUCTION

In many different scientific fields such as geology, biology, meteorology, physics, psychology, 
image analysis and medicine, measurements are directions. For instance, in geology, a 
researcher may be interested in the direction of the earth’s magnetic pole, while in biology, 

measurements may be made of the direction 
of birds’ migration or the orientation of 
animals. A set of these directions is defined 
as directional data. There are two types of 
directional data. First, data may be represented 
in two dimensions on the circumference of a 
unit circle; this type of data is called circular 
data. Circular data can be represented as 
clockwise or anti-clockwise measurements 
and may be measured either in degrees, 



Mahmood, Ehab A., Rana, Sohel, Hussin, Abdul Ghapor and Midi, Habshah

1148 Pertanika J. Sci. & Technol. 25 (4): 1147 - 1158 (2017)

distributed in the interval [0°-360°), or in radians, in the interval [0-2π). Second, the data may 
be represented in three dimensions by two angles as points on the surface of a unit sphere or as 
points on the earth’s surface, measured according to longitude and latitude. These directional 
data are defined as spherical data (Jammalamadaka & SenGupta, 2001). 

Statistical data may show some observations that are not consistent with other data, and 
these are defined as outliers. Researchers have demonstrated that the existence of outliers in 
statistical data causes some serious problems in statistical analysis. It has been confirmed that 
outliers cause misleading statistical results and estimations of parameters, and may not bring 
accurate predictions. In addition, the classical methods of statistical analysis consider some 
conditions, one of them that the statistical data should be free of outliers (Barnett & Lewis, 
1978). Maximum Likelihood Estimator (MLE) is the most famous of classical methods to 
estimate model parameters for linear and circular data. However, we cannot use it to estimate 
parameters if the data have outliers. Researchers have suggested two main ways to deal with this 
problem. First, outliers are to be detected and either deleted or adjusted, after which classical 
statistical methods can be applied. Second, robust statistical methods can be applied. In linear 
data, outliers are observations that are extreme. By contrast, outliers in circular data may not 
have extreme values because the circular data are bound by parameters. Therefore, circular 
data have properties that are different from linear data (Lee, 2010). For example, if we have 
two circular data points at 50° and 310°, then the arithmetic mean using the linear measure is 
equal to 180°. Nonetheless, the circular mean direction is equal to 0° using the geometrical 
theory of the circle. In addition, the smallest circular data point coincides with the largest point 
i.e. 0=2π and the measurement is periodic, with ϑ being the same as ϑ+p*2π for any integer p. 
The statistical measures that we apply to linear data cannot be used for circular data because 
of these geometrical properties of circular data. 

The literature indicates that few researchers are aware of how to detect outliers in circular 
data. Furthermore, to date no one has suggested a procedure for adjusting outliers in circular 
data. Mardia (1975) suggested a statistic to identify a single outlier in univariate circular data. 
He considered the observation that is the most influential on the resultant length to be an outlier. 
Collett (1980) proposed four test statistics, namely L, C, D and M, to identify a single outlier 
in univariate circular data. He found that for small samples sizes it is better to use the C and D 
statistics. Bagchi and Guttman (1990) used a Bayesian approach to identify outliers in circular 
data and to estimate the mean direction and the concentration parameters where the circular data 
follow a von Mises distribution. Fisher (1993) summarised three causes of outliers in statistical 
data: mis-recording, unwitting sampling from another population and vagaries of sampling 
resulting in the occasional isolated value. In this identification he used the M statistic, which 
had already been suggested by Collett (1980), and did not propose a new statistic.

Mardia and Jupp (2000) suggested that circular data could be tested by considering three 
factors. The first was the mean resultant length, for which they promoted the use of either the 
Mardia (Mardia, 1975) statistic or the C statistic (Collett, 1980). The second was the likelihood 
ratio test for slippage in the model, and, for circular data, they considered either the likelihood 
ratio test for location slippage in a von Mises distribution (Collett, 1980) or the likelihood ratio 
test for concentration slippage in a Fisher distribution (Fisher et al., 1981). Their final factor was 
the exponential distribution. Some tests for this factor were suggested by Fisher et al. (1981). 
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Jammalamadaka and SenGupta (2001) promoted the use of the P-P plot as a simple 
graphical way of detecting outliers in circular data. Furthermore, they proposed two statistics. 
The first of these was the locally most powerful invariant LMPI statistic. These authors used 
LMPI for the circular data that were obtained by mixing a wrapped stable distribution with 
a circular uniform distribution, WSM. Second, they proposed using a likelihood ratio testing 
(LRT) approach to identify outliers in circular data. Abuzaid et al. (2009) proposed the A 
statistic to detect an outlier in univariate circular data. This depends on the sum of the circular 
distances from any point to all other points on the circumference of the unit circle. They relied 
on calculating both the probability that the contaminant observation was an extreme observation 
and could be identified as an outlier, and the probability of a type II error, as a measure for 
comparing their suggestion with the C, D and M statistics. 

Abuzaid (2010) used the geometrical properties of the chord of a circle for detecting an 
outlier in univariate circular data. Rambli et al. (2012) adopted the M, C, D and A statistics to 
identify outliers in univariate circular data when the circular data follow a wrapped normal 
distribution. They found that the A statistic is the best for a large sample size. However, for a 
small sample size the M statistic is the best. Abuzaid (2012) analysed Mother’s Day celebration 
data using circular statistics. He applied cluster analysis to the circular data to define possible 
clusters and to detect outliers in univariate circular data. In addition, he used the C and D 
statistics as numerical statistics, as suggested by Collett (1980), and the boxplot as a graphical 
method to identify outliers. Abuzaid et al. (2012) suggested a test statistic to detect outliers in 
univariate and bivariate circular data. The test statistic was based on the approximate distribution 
of the circular distances between the sample points. However, none of the previous researchers 
proposed how one could adjust the outliers.

In this paper, we propose a procedure to adjust outliers in univariate circular data to avoid 
their effects so that we can then apply classical circular statistical measures. This paper is 
arranged in the following sections. Section 2 describes the von Mises distribution and some 
important related formulas. Section 3 explains the proposed procedure for adjusting outliers. 
Section 4 illustrates the performance of our procedure. Section 5 gives an example based on 
real data to show how the proposed procedure can be used in real-life situations. Finally, in 
section 6, using all the numerical results, we conclude with the benefits of using the proposed 
procedure for univariate circular data.

THE VON MISES DISTRIBUTION AND ITS ESTIMATED PARAMETERS

The von Mises distribution is the most well-known of circular probability distributions. It is 
the same as normal distribution in linear data.

Let ϑ1, ϑ2,……,ϑn be circular observations following a von Mises distribution with circular 
mean direction µ and concentration parameter k, denoted by [vM(µ,k)]. The probability density 
function of the von Mises distribution is given by Hamelryck et al. (2012):

                      [1]
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where 0 ≤μ < 2π, k ≥ 0 and I0 denote the modified Bessel function of the first kind and order 
0, which can be defined as follows:

       

If k=0, then the probability density function of the von Mises distribution will be the same as 
the probability density function of the uniform distribution of circular data (Mardia & Jupp, 
2000), where:

       

The circular mean of the circular observations is estimated by maximum likelihood according 
to the following formula (Jammalamadaka & SenGupta, 2001):

                   [2]

where   

The mean resultant length  is a measure of the concentration of the circular observations at a 
specific point of the circumference of the circle. It is calculated using this formula:

                      [3]

where
       

 = 0 is satisfied if and only if the circular data are widely  dispersed  on  the  circumference  
( ). 

 = 1 is satisfied if and only if the circular data have a high concentration at a  specific point  
( ).

The maximum likelihood estimation of the concentration parameter k is given by the following 
formula (Fisher, 1993): 

                  [4]
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PROPOSED PROCEDURE FOR ADJUSTING OUTLIERS

The circular distance between any two circular points is the smallest distance between them 
on the circumference of a circle and it lies in [0, π] (Jammalamadaka & SenGupta, 2001). In 
this paper, we assume that an outlier lies far from the circular mean. Therefore, we suggest 
to depend on the circular distance between circular data points and the circular mean as a 
procedure for adjusting. 

Our proposed procedure is carried out in two stages. Let ϑ1, ϑ2, ….., ϑn be circular data 
with sample size n; in the first stage of our proposal, we adjust the circular distance between 
the outliers and the circular mean as follows:

i. Calculate the circular mean for clean data  (after delete outliers) in order to avoid their 
effects. 

ii. Calculate the circular distance dist between the clean circular data points and  using the 
following formula:

If  :

                            | ϑi -  |                 if | ϑi -   | ≤ π
disti               [5]
                                   2π - ϑi +              if | ϑi -  | > π

If π <  < 2π :

                              | ϑi -  |             if | ϑi -  | ≤ π
disti =                 [6]
                                      2π -  + ϑi        if | ϑi -  | >  π  

i = 1, 2, ….., n-out

where, 

out : number of outliers

0 ≤ disti ≤ π

iii. Calculate mean of the circular distance MCD and max (dist). Clearly, max (dist) is not an 
outlier. 

iv. Calculate the contaminated circular distance disti (cont) between the outliers and . 

v To adjust disti (cont), we propose the following formula:

       disti (adj) = (disti (cont) + MCD) / 2              [7]

If disti (adj) > max(dist), we continue to calculate a new disti (adj) but we substitute disti 
(adj) in place of disti (cont) in Equation (7). We apply this progress until we have disti (adj) 
≤ max(dist). In this step, we try to minimise the value of disti (cont) to be less than max(dist) 
because max(dist) is not an outlier. 
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In the second stage, we depend on formulas (5) and (6) to calculate the adjusted value of 
outliers ϑi(adj) according to the following formula:

       ϑi(adj) =  + disti (adj)              [8]

In the adjustment procedure, we aim to minimise the circular distance between ϑi and the circular 
mean. Therefore, in Equation (8) we may subtract disti (adj) from , instead of adding it, to 
minimise the circular distance. This depends on the position of the circular mean direction of 
the population on the circumference of the unit circle. For instance, if the circular mean for a 
particular population is equal to zero, we add disti (adj)  whenever  > π, to make it closer to 
zero. Likewise, we subtract disti (adj)  whenever  <  π. 

PERFORMANCE OF THE PROPOSED PROCEDURE

We examined the performance of our procedure by applying it to a series of simulation studies 
for univariate circular data using Monte Carlo methods. We depended on the four statistical 
measures to evaluate our suggestion: the bias of the circular mean, the bias of the concentration 
parameter k, mean resultant length ̅ and mean of the circular distance MCD. The simulation 
studies were divided into four parts. First, we generated a set of circular data such that ϑ~vM(0,k) 
for three samples having the sizes 20, 40 and 60 and using six values of the concentration 
parameter k = 0.5, 1, 2, 3, 5 and 6. The statistical measures were calculated and called ‘clean 
measures’. Second, the data were contaminated at position d using the following Equation:

       ϑc[d] =  ϑ[d] + λπ mod(2π)             [9]

where ϑc[d] is the contaminated circular observation at position [d], and λ is the degree of 
contamination, with 0 ≤ λ ≤ 1.

If λ = 0, there is no contamination at position [d].

If λ = 1, the circular observation is located at the anti-mode of its initial location. 

For all combinations of sample sizes and concentration parameters, we generated 5% 
and 10% of the contaminated data, with λ = 0.8. The statistical measures were calculated, 
called ‘cont. measures’. Third, we deleted the outliers in the contaminated data to calculate 
the statistical measures, and these are called ‘del. Measures’. Finally, we applied the proposed 
procedure and calculated the statistical measures, which are called ‘adj. measures’. The process 
was replicated 5,000 times for each combination of sample size and concentration parameter k. 

Figure 1 shows that the values of the bias of the estimated circular mean for the 
contaminated data are relatively large. In addition, the values of the bias of the estimated circular 
mean with 10% contaminated data are larger than the values with 5% for all combinations. In 
contrast, the values of the bias of the adjusted circular mean are relatively low and are close to 
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the values of the biases for the data with no outliers and to the data with the outliers deleted. 
This was one of the measures used to evaluate our procedure. 

We can notice in Figure 2 that there are no differences between the values of the biases of 
the estimated concentration parameters k, for k ≤ 3. On the other hand, the contaminated data 
have large values of bias for k > 3. The values of the biases of the concentration parameter 
for the adjusted data are low and are close to the results with clean data and with the outliers 
deleted. This is more evidence of the success of our procedure for all combinations. 

The results in Figure 3 show that there was a vast difference between the results of the 
contaminated data and those of the others especially with the increased ratio of contamination. 
In contrast, the results of the proposed procedure were close to 1 at high values of concentration 
parameters; they were as close as the clean data and the data with outliers deleted. 

FIGURES 
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Figure 1. Bias of estimated circular mean

In Figure 4, the values of the MCD statistic increased for all combinations of contaminated 
data. Moreover, the values of the MCD statistic with 10% outliers were larger than the values 
with 5% outliers. However, our procedure can minimise these, giving values that are close 
for clean data and for data with the outliers deleted. This is the fourth measure used to test 
our procedure.
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Figure 2. Bias of estimated kappa 
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Figure 3. Mean resultant length
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Figure 3. Mean Resultant Length 
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In summary, our procedure successfully adjusted the outliers for all combinations of the 
values of the concentration parameter k and all sizes of sample, with 5% and 10% contamination, 
according to the results for the statistical measures.
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Figure 4. Mean circular distance

PRACTICAL EXAMPLE

We considered the sea stars data given by Fisher (1993). The data represent the measurements 
of the resultant directions of 22 sea stars for 11 days after they were displaced from their natural 
habitat. Fisher identified observation 13 as an outlier. To evaluate our proposed procedure, 
we applied the following steps. First, we estimated the circular mean , the concentration 
parameter , the Mean Resultant Length  and mean of the circular distance MCD for three 
cases: with contaminated data; with the outliers deleted; and with the outliers adjusted. The 
results are shown in Table 1.
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The results shown in Table 1 show that the estimated circular mean after adjusting the 
outlier was closer to the circular mean with the outlier deleted than to the circular mean for the 
contaminated data. We could see a similar scenario for the concentration parameter k, Mean 
Resultant Length  and mean of the circular distance MCD. Second, we plotted the sea star 
data with the outlier and with the outlier adjusted. Figure 5 shows two cases for sea star data, 
with the outlier and with the outlier adjusted. 

Table 1 
Comparison of Measures for Three Cases (Sea Stars Data)  

cont. del. adj.
0.054 0.023 6.27

3.3 5.7 5.1

0.83 0.91 0.90

MCD 0.43 0.33 0.35

18 	
	

 

 

 

Figure 5. Sea star data with outlier and with adjusted outlier. 
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It is clear that our procedure could significantly adjust the outlier and make the circular 
data more consistent. This is another piece of evidence that our procedure is successful in 
adjusting outliers.

CONCLUSION

In this paper, we proposed a new procedure for adjusting outliers in univariate circular data. 
In general, the proposed procedure performs well according to the statistical measures used 
in the paper. The proposed procedure decreases the bias of both the circular mean and the 
concentration parameter k. Moreover, the proposed procedure gives results of Mean Resultant 
Length as close as results of clean data and minimises MCD with low and high levels of 
contamination. The proposed procedure is also successful for different sample sizes. Hence, 
we suggest that our procedure should be used to adjust outliers in univariate circular data. 
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